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Figure 1: (left) A view of a game scene rendered with shadows. (right) Shadow map with shadow casters rendered using a naive application
of occlusion culling in the light view (gray), and shadow casters rendered using our new method (orange). The view frustum corresponding
to the left image is shown in yellow. Note that for this view our shadow caster culling provided a 3x reduction in the number of rendered
shadow casters, leading to a 1.5x increase in total frame rate. The scene is a part of the Left 4 Dead 2 game (courtesy of Valve Corp.).

Abstract

We propose a novel method for efficient construction of shadow
maps by culling shadow casters which do not contribute to visible
shadows. The method uses a mask of potential shadow receivers
to cull shadow casters using a hierarchical occlusion culling algo-
rithm. We propose several variants of the receiver mask implemen-
tations with different culling efficiency and computational costs.
For scenes with statically focused shadow maps we designed an
efficient strategy to incrementally update the shadow map, which
comes close to the rendering performance for unshadowed scenes.
We show that our method achieves 3x-10x speedup for rendering
large city like scenes and 1.5x-2x speedup for rendering an actual
game scene.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism— [I.3.5]: Computer Graphics—
Computational Geometry and Object Modeling

Keywords: shadow maps, occlusion culling, real time rendering

1 Introduction

Shadow mapping is a well-known technique for rendering shad-
ows in 3D scenes [Williams 1978]. With the rapid development
of graphics hardware, shadow maps became an increasingly popu-
lar technique for real-time rendering. A variety of techniques have
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been proposed, most of which focus on increasing the quality of
the rendered image given a maximum resolution of the shadow
map [Stamminger and Drettakis 2002; Wimmer et al. 2004; Lloyd
et al. 2008]. Given sufficiently high resolution, these methods
achieve shadows of very high quality.

For highly complex scenes, however, shadow mapping can be-
come very slow. One problem is the rendering of the main cam-
era view. This problem has been addressed by occlusion culling,
which aims to quickly cull geometry which does not contribute to
the image [Cohen-Or et al. 2003]. However, just rendering the cam-
era view quickly does not guarantee high frame rates when shadow
mapping is used. In particular, the overhead of creating the shadow
map is not reduced. Thus, rendering the shadow map can easily
become the bottleneck of the whole rendering pipeline as it may
require rendering a huge amount of shadow casters at a very high
resolution.

A naive solution to this problem would again use occlusion culling
to reduce the amount of rendered shadow casters when rendering
the shadow map. However it turns out that for common complex
scenes like terrains or cities, the lights are set up so that they have
a global influence on the whole scene (e.g., sun shining over the
city). For such scenes, occlusion culling from the light view will
not solve the problem, as the depth complexity of the light view is
rather low and thus not much geometry will be culled. Thus even
if occlusion culling is used for both the camera view and the light
view, we might end up rendering practically all geometry contained
in the intersection of the view frustum and the light frustum, and
many rendered shadow casters will not contribute to the shadows in
the final image.

In this paper, we propose a method for solving this problem by
using the knowledge of visibility from the camera for culling the
shadow casters. First, we use occlusion culling for the camera
view to identify visible shadow receivers. Second, when render-
ing into the shadow map, we use only those shadow casters which
cast shadows on visible shadow receivers. All other shadow cast-
ers are culled. For both the camera and the light views, we use
an improved version of the coherent hierarchical culling algorithm
(CHC++) [Mattausch et al. 2008], which provides efficient schedul-



ing of occlusion queries based on temporal coherence. We show
that this method brings up to an order of magnitude speedup com-
pared to naive application of occlusion culling to shadow map-
ping (see Figure 1). As a minor contribution we propose a simple
method for incrementally updating a statically focused shadow map
for scenes with moving objects.

2 Related Work

Shadow mapping was originally introduced by Williams [1978],
and has meanwhile become the de-facto standard shadow algo-
rithm in real-time applications such as computer games, due to its
speed and simplicity. For a discussion of different methods to in-
crease the quality of shadow mapping, we refer to a recent sur-
vey [Scherzer et al. 2010]. In our approach in particular, we make
use of light space perspective shadow mapping (LiSPSM) [Wim-
mer et al. 2004] in order to warp the shadow map to provide higher
resolution near the viewpoint, and cascaded shadow maps [Lloyd
et al. 2006], which partition the shadow map according to the view
frustum with the same aim.

There has been surprisingly little work on shadow mapping for
large scenes. One obvious optimization which also greatly aids
shadow quality is to focus the light frustum on the receiver frus-
tum [Brabec et al. 2002]. As a result, many objects which do not
cast shadows on objects in the view frustum are culled by frustum
culling in the shadow map rendering step. Lauritzen et al. [2010]
have reduced the focus region to the subset of visible view sam-
ples in the context of optimizing the splitting planes for cascaded
shadow maps.

Govindaraju et al. [2003] were the first to use occlusion culling to
reduce the amount of shadow computations in large scenes. Their
algorithm computes object-precision shadows mostly on the CPU
and used occlusion queries on a depth map to provide the tightest
possible bound on the shadow polygons that have to be rendered.
While their algorithm also renders shadow receivers to the stencil
buffer to identify potential shadow casters, this was done after a
depth map had already been created, and thus this approach is un-
suitable for shadow mapping acceleration. In our algorithm, on the
other hand, the creation of the depth map itself is accelerated, which
is a significant benefit for many large scenes. Lloyd et al. [2004]
later extended shadow caster culling by shadow volume clamping,
which significantly reduced the fillrate when rendering shadow vol-
umes. Their paper additionally describes a method for narrowing
the stencil mask to shadow receiver fragments that are detected
to lie in shadow. Décoret [2005] proposed a different method for
shadow volume clamping as one of the applications for N-buffers.
Unlike Lloyd et al. [2004] Décoret enhances the stencil mask by de-
tecting receiver fragments which are visible from the camera. The
methods for shadow volume culling and clamping have been ex-
tended by techniques allowing for more efficient GPU implemen-
tations[Eisemann and Décoret 2006; Engelhardt and Dachsbacher
2009].

While our method shares the idea of using visible receivers to cull
shadow casters proposed in the above mentioned techniques, in
these methods the shadow map served only as a proxy to facili-
tate shadow volume culling and clamping, and the efficient con-
struction of the shadow map itself has not been addressed. When
shadow mapping is used instead of more computationally demand-
ing shadow volumes, the bottleneck of the computation moves to
the shadow map construction itself. This bottleneck, which we ad-
dress in the paper, was previously left intact.

3 Algorithm Outline

The proposed algorithm consists of four main steps:

(1) Determine shadow receivers

(2) Create a mask of shadow receivers

(3) Render shadow casters using the mask for culling

(4) Compute shading

The main contribution of our paper lies in steps (2) and (3). To give
a complete picture of the method we briefly outline all four steps of
the method.

Determine shadow receivers The potential shadow receivers
for the current frame consist of all objects visible from the cam-
era view, since shadows on invisible objects do not contribute to
the final image. Thus we first render the scene from the point of
view of the camera and determine the visibility status of the scene
objects in this view.

To do both of these things efficiently, we employ hierarchical oc-
clusion culling [Bittner et al. 2004; Guthe et al. 2006; Mattausch
et al. 2008]. In particular we selected the recent CHC++ algo-
rithm [Mattausch et al. 2008] as it is simple to implement and pro-
vides a good basis for optimizing further steps of our shadow caster
culling method. CHC++ provides us with a visibility classification
of all nodes of a spatial hierarchy. The potential shadow receivers
correspond to visible leaves of this hierarchy.

Note that in contrast to simple shadow mapping, our method re-
quires a render pass of the camera view before rendering the shadow
map. However, such a rendering pass is implemented in many ren-
dering frameworks anyway. For example, deferred shading, which
has become popular due to recent advances in screen-space shading
effects, provides such a pass, and even standard forward-renderers
often utilize a depth-prepass to improve pixel-level culling.

Create a mask of shadow receivers The crucial step of our al-
gorithm is the creation of a mask in the light view which represents
shadow receivers. For a crude approximation, this mask can be
formed by rendering bounding boxes of visible shadow receivers in
the stencil buffer attached to the shadow map. In the next section,
we propose several increasingly sophisticated methods for building
this mask, which provide different accuracy vs. complexity trade-
offs.

Render shadow casters We use hierarchical visibility culling
using hardware occlusion queries to speed up the shadow map ren-
dering pass. In addition to depth-based culling, we use the shadow
receiver mask to cull shadow casters which do not contribute to vis-
ible shadows. More precisely, we set up the stencil test to discard
fragments outside the receiver mask. Thus, the method will only
render shadow casters that are visible from the light source and
whose projected bounding box at least partly overlaps the receiver
mask.

Compute shading The shadow map is used in the final rendering
pass to determine light source visibility for each shaded fragment.

4 Shadow Caster Culling

The general idea of our method is to create a mask of visible shadow
receivers, i.e., those objects determined as visible in the first camera
rendering pass. This mask is used in the shadow map rendering pass



Figure 2: Visualization of different receiver masks. On the left there is a light space view of the scene showing surfaces visible from the
camera in yellow. On the right three different receiver masks are shown. Note that the invisible object on the top right does not contribute to
any of the receiver masks.

together with the depth information to cull shadow casters which do
not contribute to the visible shadows. Culling becomes particularly
efficient if it employs a spatial hierarchy to quickly cull large groups
of shadow casters, which is the case for example in the CHC++
algorithm.

There are various options on how the receiver mask can be imple-
mented. We describe four noteworthy variants which differ in im-
plementation complexity as well as in culling efficiency. The cre-
ation of the mask happens in a separate pass before rendering the
shadow map, but may already generate parts of the shadow map
itself as well, simplifying the subsequent shadow map rendering
pass.

We start our description with a simple version of the mask, which
is gradually extended with more advanced culling. As we shall see
later in the results section, in most cases the more accurate mask
provides better results, although there might be exceptions for par-
ticular scene and hardware configurations.

4.1 Bounding Volume Mask

The most straightforward way to create the mask is to rasterize
bounding volumes of all visible shadow receivers into the stencil
buffer attached to the shadow map.

Such a mask will generally lead to more shadow casters being ren-
dered than actually necessary. The amount of overestimation de-
pends mostly on how fine the subdivision of scene meshes into in-
dividual objects is, and how tightly their bounding volumes fit. If
an individual scene object has too large spatial extent, its projection
might cover a large portion in the shadow mask even if only a small
part of the mesh is actually visible. An illustration of the bounding
volume mask is shown in Figure 2 (BVOL).

4.2 Geometry Mask

In order to create a tighter shadow receiver mask, we can rasterize
the actual geometry of the visible shadow receivers instead of their
bounding volumes into the stencil buffer.

While rendering the visible shadow receivers, we also write the
depth values of the shadow receivers into the shadow map. This
has the advantage that these objects have thus already been ren-
dered into the shadow map and can be skipped during the subse-
quent shadow map rendering pass, which uses occlusion queries
just for the remaining objects. An illustration of the bounding vol-
ume mask is shown in Figure 2 (GEOM).

In some scenes many shadow receivers also act as shadow casters
and thus this method will provide a more accurate mask at almost
no cost. However if most shadow receivers do not act as shadow
casters (i.e., most of the scene is shadowed by objects outside of
the camera view), the shadow mask creation can become rather
expensive, since most parts of the shadow map will be replaced
by other objects which act as real shadow casters. Consequently,
the resources for rendering these shadow receivers into the shadow
map were wasted, as they would have been culled by the occlusion
culling algorithm otherwise.

4.3 Combined Geometry and Bounding Volume Mask

In order to combine the positive aspects of the two previously de-
scribed methods, we propose a technique which decides whether a
shadow receiver should fill the mask using its bounding box or its
geometry. The decision is based on the estimation of whether the
visible shadow receiver will simultaneously act as a shadow caster.
Such objects are rendered using geometry (with both stencil and
depth, as such objects must be rendered in the shadow map any-
way), while all other visible receivers are rendered using bounding
boxes (with only stencil write).

The estimation uses temporal coherence: if a shadow receiver was
visible in the shadow map in the previous frame, it is likely that this
receiver will stay visible in the shadow map and therefore also act
as a shadow caster in the current frame.

Again, all objects that have already been rendered into the shadow
map using depth writes can be skipped in the shadow map render-
ing pass. However, in order to estimate the receiver visibility in the
subsequent frame, visibility needs to be determined even for these
skipped objects. Therefore we include them in the hierarchical oc-
clusion traversal and thus they may have their bounding volumes
rasterized during the occlusion queries.

4.4 Fragment Mask

Even the most accurate of the masks described above, the geometry
mask, can lead to overly conservative receiver surface approxima-
tions. This happens when a receiver object spans a large region of
the shadow map even though most of the object is hidden in the
camera view. An example would be a single ground plane used for
a whole city, which would always fill the whole shadow receiver
mask and thus prevent any culling. While such extreme cases can
be avoided by subdividing large receiver meshes into smaller ob-
jects, it is still beneficial to have a tighter mask which is completely
independent of the actual object subdivision.



Method accuracy fill rate transform rate
BVOL low high low
GEOM medium medium medium

GEOM+BVOL medium low–medium low
FRAG high medium medium

Table 1: Summary of the masking techniques and indicators of their
main attributes. BVOL – bounding box, GEOM – geometry mask,
GEOM+BVOL – combined geometry and bounding volume mask,
FRAG – fragment mask. Note that the FRAG method either relies on
availability of direct stencil writes, or requires slightly more effort
in mask creation and culling phases as described in Section 4.4.

Fortunately, we can further refine the mask by using a fragment
level receiver visibility tests for all shadow receivers where the full
geometry is used for the mask. While creating the mask by raster-
izing the geometry in light space, we project each fragment back
to view space and test the projected fragment visibility against the
view space depth buffer. If the fragment is invisible, it is on a part
of the shadow receiver that is hidden, and is thus not written to the
mask, otherwise, the mask entry for this fragment is updated. The
shadow map depth needs to be written in both cases, since even if
the fragment is not visible in the camera view, it might still be a
shadow caster that shadows another visible shadow receiver.

A similar mask construction approach was proposed by
Décoret [2005] for culling and clamping shadow volumes of
shadow casters. Décoret used a pair of litmaps to obtain minimum
and maximum depths of visible receivers per texel in order to clamp
shadow volumes. In his method all scene objects are processed
twice in the mask construction phase and the method does not use
the knowledge of visible shadow receivers. In contrast, we use a
single binary mask of visible receiver fragments and combine the
construction of the mask with simultaneous rendering of depths of
objects which act both as shadow receivers and shadow casters,
which is very important to reduce the bottleneck created by the
shadow map construction.

The mask constructed using the fragment level visibility tests is
pixel accurate, i.e., only locations that can receive a visible shadow
are marked in the mask (up to the bias used for the fragment depth
comparison). Note that the fragment visibility test corresponds to
a “reversed” shadow test, i.e., the roles of the camera and the light
are swapped: instead of testing the visibility of the camera view
fragment with respect to the shadow map, we test visibility of the
fragment rendered into the shadow map with respect to the camera
using the camera view depth buffer. An illustration of the bounding
volume mask is shown in Figure 2 (FRAG).

The implementation of this approach faces the problem that the
stencil mask needs to be updated based on the outcome of the
shader. This functionality is currently not widely supported in hard-
ware. Therefore, we implement the fragment receiver mask as an
additional texture render target instead of using the stencil buffer.
This requires an additional texture fetch and a conditional fragment
discard based on the texture fetch while rendering the occlusion
queries in the shadow map rendering pass, which incurs a small
performance penalty compared to a pure stencil test.

The summary of different receiver masking methods is given in Ta-
ble 1. The illustration of the culling efficiency of different masks
is shown in Figure 3. Note that apart from the BVOL method, all
other methods initiate the depth buffer values for the light view with
depths of visible receivers.

Figure 3: 2D illustration of the culling efficiency of different mask-
ing strategies. The figure shows an example of the scene with
a shadow receiver object and different types of shadow receiver
masks. Object A is always rendered as it intersects all masks, ob-
ject B is culled only by the FRAG mask, C is culled by depth test
(occluded by B) and by the FRAG and GEOM masks, and finally D
is culled by all types of masks.

5 Further Optimizations

This section contains several optimization techniques which can op-
tionally support the proposed receiver masking in further enhancing
the performance of the complete rendering algorithm.

5.1 Incremental Shadow Map Updates

If the shadow map is statically focused, we can extend the approach
by restricting the shadow receiver mask only to places where a po-
tential change in shadow can happen. We can do so by building
the shadow receiver mask only from objects involved in dynamic
changes. In particular we render all moving objects into the shadow
receiver mask in their previous and current positions. This pass is
restricted only to dynamic objects which are either visible in this or
the previous frame.

If only a fraction of the scene objects is transformed, the shadow re-
ceiver mask becomes very tight and the overhead for shadow map
rendering becomes practically negligible. However, this optimiza-
tion is only useful if a static shadow map brings sufficient shadow
quality compared to a shadow map focused on the view frustum.

Note that in order to create the stencil mask and simultaneously
clear the depth buffer in a selective fashion, we reverse the depth
test (only fragments with greater depth pass) and set the fragment
depth to 1 in the shader while rendering the bounding boxes of mov-
ing objects.

5.2 Visibility-Aware Shadow Map Focusing

Shadow maps are usually “focused” on the view frustum in order to
increase the available shadow map resolution. If visibility from the
camera view is available, focusing can be improved further [Lau-
ritzen et al. 2010]: The light frustum can then be computed by cal-
culating the convex hull of the light source and the set of bounding
boxes of the visible shadow receivers. Note that unlike the method
of Lauritzen et al. [2010], our focusing approach does not require
a view sample analysis on the GPU, but uses the readily available
visibility classification from the camera rendering pass.



Figure 4: This figure shows a viewpoint in the Vienna scene, the corresponding light view, and a visualization of the different versions of
receiver masks where blue indicates the bounding volume mask, green the geometry mask, and red the fragment mask.

This simple method effectively increases the resolution of the
shadow map, as it is focused only on the visible portion of the
scene. However this technique also has a drawback: if a large visi-
bility change occurs in the camera view, the focus of the light view
changes dramatically from one frame to the next, which can be per-
ceived as temporal alias or popping of the shadow. This can easily
happen in scenes in which a distant object suddenly pops up on the
horizon such as a tall building, flying aircraft or a mountain.

5.3 CHC++ Optimizations

Our new shadow culling method works with any occlusion culling
algorithm that allows taking the stencil mask into account. We
use coherent hierarchical culling (CHC++ [Mattausch et al. 2008])
to implement hierarchical occlusion queries both for rendering the
camera view and for rendering the shadow map. For the shadow
map, occlusion queries can be set up so that they automatically take
into account the shadow receiver mask stored in the stencil buffer.
If the receiver mask is stored in a separate texture (as for the frag-
ment mask), a texture lookup and conditional fragment discard is
necessary in the occlusion culling shader.

We also propose a few modifications to the CHC++ algorithm,
which should be useful in most applications using CHC++. Our re-
cent experiments indicated that for highly complex views the main
performance hit of CHC++ comes from the idle time of the CPU,
when the algorithm has to wait for query results of previously in-
visible nodes. The reason is that previously invisible nodes, which
sometimes generate further queries leading to further wait time, can
be delayed due to batching, whereas queries for previously visible
nodes, whose result is only of interest in the next frame, are issued
immediately whenever the algorithm is stalled waiting for a query
result.

Therefore, it turns out to be more beneficial to use waiting time to
issue queries for previously invisible nodes instead, starting these
queries as early as possible. Queries for the previously visible
nodes, on the other hand, are issued after the hierarchy traversal
is finished, and their results are fetched just before the traversal in
the next frame. Between these two stages we apply the shading pass
with shadow map lookups, which constitutes a significant amount
of work to avoid any stalls.

Another very simple CHC++ modification concerns the handling of
objects that enter the view frustum. If such an object has been in
the view frustum before, instead of setting it to invisible, it inherits
its previous classification. This brings benefits especially for the
camera view for frequent rotational movements.

6 Results and Discussion

6.1 Test Setup

We implemented our algorithms in OpenGL and C++ and evaluated
them using a GeForce 480 GTX GPU and a single Intel Core i7
CPU 920 with 2.67 GHz. For the camera view render pass we used
a 800 × 600 32-bit RGBA render target (to store color and depth)
and a 16-bit RGB render target (to store the normals), respectively.
For the light view render pass we used a 32-bit depth-stencil texture
and an 8-bit RGB color buffer with varying sizes. The application
uses a deferred shading pipeline for shadowing.

City scenes exhibit the scene characteristics which our algorithm is
targeted at – large, open scenes with high cost for shadow mapping.
Hence we tested our algorithm in three city environments: a model
of Manhattan, the ancient town of Pompeii, and the town of Vienna
(refer to Table 3 for detailed information). All scenes were pop-
ulated with various scene objects: Manhattan was populated with
1,600 cars, Pompeii with 200 animated characters, and Vienna with
several street objects and trees. For Manhattan (Pompeii) we cre-
ated 302 (402) floor tiles in order to have sufficient granularity for
the object-based receiver mask methods. We measured our timings
with a number of predefined walkthroughs. Figure 4 shows the dif-
ferent receiver masks in a real scene.

Abbreviation Method
VFC view frustum culling
REF CHC++ occlusion culling (main reference)
FOCUS REF + visibility-aware focusing
CHC++-OPT optimized CHC++
INCR incremental shadow map updates
UNSHAD main render pass without shadow mapping

Table 2: Abbreviations used in the plots (also refer to Table 1 for
the variants of receiver masks).

We compare our methods mainly against a reference method (REF)
that uses the original CHC++ algorithm for both the camera view
and the light view. We also show simple view frustum culling
(VFC) and a minor modification of the REF method which uses
visibility-aware focusing (FOCUS). Note that apart from the FO-
CUS method, all other tested methods do not use visibility-aware
focusing. The tested methods are summarized in Table 2.

6.2 Receiver Mask Performance and Shadow Map Res-
olution

Table 4 shows average frame times for the tested scenes and differ-
ent shadow map resolutions. As can be seen, receiver masking is
faster than REF and FOCUS for all scenes and parameter combina-
tions. There is a tendency that our algorithm brings slightly higher
speedup for uniform shadow mapping than for LiSPSM. This has
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Table 3: Statistics for the scenes and characteristic walkthroughs.

SM type LISPSM UNIFORM
Shadow size 1K 2K 4K 1K 2K 4K

Scene Vienna
REF 21.6 22.3 22.4 28.7 28.7 29.2

FOCUS 9.1 9.3 9.3 10.8 11.0 11.4
GEOM+BVOL 4.9 4.9 5.0 4.9 5.0 5.1

FRAG 2.9 3.5 6.1 2.9 3.4 5.9
Scene Manhattan
REF 36.6 35.9 35.1 44.2 43.9 41.8

FOCUS 28.9 28.1 27.9 31.9 30.7 30.0
GEOM+BVOL 5.6 5.7 6.6 5.6 5.7 6.5

FRAG 4.5 5.4 9.0 4.5 5.3 8.6
Scene Pompeii
REF 34.8 34.8 39.2 40.5 40.2 44.8

FOCUS 17.4 17.4 20.6 18.2 18.3 21.2
GEOM+BVOL 11.2 11.2 13.4 11.4 11.3 13.0

FRAG 9.7 10.0 13.2 9.8 10.2 12.5

Table 4: Average frame times for the tested scenes (in ms). The time
for the best method for the given scene and shadow map resolution
is marked in bold.

two reasons: First, LiSPSM focuses much better on the visible parts
of the view frustum. Second, LiSPSM trades the quality increase
in the near field with quality loss in the far field regions (depending
on the settings of the n parameter). Therefore it can happen that
small objects in the background are simply not represented in the
shadow map and will therefore be culled. Surprisingly, the frame
times of the REF and FOCUS methods slightly decrease for in-
creasing shadow map sizes in Manhattan. This unintuitive behavior
might be connected with the heavy transform limitation of these al-
gorithms for this particular scene configuration (i.e., due to many
car instances).

Note that for shadow maps smaller or equal than 2K2, the frag-
ment mask is consistently the fastest method in our tests. For larger
shadow maps of 4K2 or more, it becomes highly scene depen-
dent whether the benefit outweighs the cost of the additional texture
lookups during mask creation and occlusion culling. In this case,
the GEOM+BVOL method can be used, which has a smaller over-
head caused only by the stencil buffer writes and the rasterization
of the additional bounding boxes. On the other hand, we expect a
higher speedup for the reverse shadow testing once it is possible to
write the stencil buffer in the shader. There is already a specifica-
tion available called GL ARB STENCIL EXPORT [Khronos Group
2010], and we hope that it will be fully supported in hardware soon.

6.3 Walkthrough Timings

The plots in Table 3 show timings for walkthroughs selected scene
and parameter combinations. For Manhattan, we applied uniform
shadow mapping with 4K2 resolution and use the combined geom-
etry and bounding volume receiver mask (GEOM+BVOL). Note
that in this scene, the FOCUS method is often useless because
skyscrapers are often visible in the distance, while most of the ge-
ometry in between can actually be culled by receiver masking. In
Vienna and Pompeii, we applied LiSPSM shadow mapping with
1K2 resolution, and the fragment mask (FRAG). The plots show
that receiver masking is the only method that provides stable frame
times for the presented walkthroughs, which is an important prop-
erty for a real-time rendering algorithm. The walkthroughs cor-
responding to these plots along with visualizations of the culled
objects can be watched in the accompanying video for further anal-
ysis.

Table 5 shows the statistics and the timings for a scene taken from
an actual game title (Left 4 Dead 2) using cascaded shadow map-
ping. This game scene was rendered using a different occlusion
culling algorithm than CHC++, implemented in a different render-
ing engine. The receiver masking is however implemented exactly
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Table 5: Statistics for the Left 4 Dead 2 scene and timings for
a walkthrough using cascaded shadow mapping with four 1K2

shadow maps.

as described in our paper. The fragment receiver mask and sub-
sequent culling is applied separately for each of the four cascaded
shadow maps using 1K2 resolution. Note that in this scene many
objects are actually inside the houses and hence culled already by
the REF method (depth-based culling without receiver masking).
Even though this might imply a limited additional gain of our al-
gorithm compared to REF, Table 5 shows that fragment masking
still provides a significant speedup. Note that during frames 1,800-
2,200, only a small fraction of objects is visible in the view frustum
and almost all casters in the shadow frustum throw a visible shadow
in the main view and thus there is very small potential for perfor-
mance gain using any shadow caster culling method.

6.4 Geometry Analysis and CHC++ Optimization

Figure 5 analyses the actual amount of geometry rendered for dif-
ferent methods and contrasts that with frame times. In particular,
here we include a comparison of the original CHC++ algorithm
used in REF with our optimized version CHC++-OPT. The differ-
ent receiver masking versions all use optimized CHC++. For all
algorithms we used a 2K2 shadow map and LiSPSM.

Interestingly, the optimized CHC++ algorithm renders more ver-
tices, but provides a constant speedup over the original version be-
cause of reduced CPU stalls when waiting for an occlusion query
result. As can be observed from the plots, the speedup of the re-
ceiver masks corresponds closely to their level of tightness hence
the number of rendered vertices.
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Figure 5: Dependence of the frame time (bottom left) and num-
ber of vertices (bottom right) for a walkthrough of the Vienna scene
and different shadow computation methods. Note that the walk-
throuh also includes viewpoints located above the roofs. Such view-
points see far over the city roofs (top). In this comparison the FRAG
method achieves consistently the best performance followed by the
the GEOM+BVOL method.
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Figure 6: Effect of incremental mask updates for a statically fo-
cused shadow map.

6.5 Incremental Shadow Map Updates

In Figure 6, we use a static 4K2 shadow map for the whole Pom-
peii scene. Using this particular setup, REF performs over ten times
worse than FRAG. Conversely, a static shadow map allows us to use
the incremental shadow map updates optimization (INCR), which
restricts shadow map updates to the parts of the shadow map that
change, i.e., to the projections of the bounding boxes of dynamic
objects. As can be seen, this technique can approach the perfor-
mance of unshadowed scene rendering (UNSHAD). Note that we
use a log-scale for this plot.

6.6 Dependence on Elevation Angle

In Figure 7, we show the dependence of the light source elevation
angle on the (average) frame time for shadow mapping with resolu-
tion 1K2 in a Vienna walkthrough. For uniform shadow mapping,
there is a noticeable correlation between the angle and the render
times for REF and FOCUS. Interestingly, there seems to be a much
weaker correlation for LiSPSM shadow mapping. The influence of
the elevation angle on the performance of receiver masking is mini-
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Figure 7: Dependence of the (average) render time on the light
elevation angle.

mal in either case and our method delivers a consistent performance
increase.

7 Conclusion

We proposed a method for efficient shadow caster culling for
shadow mapping. In particular, our method aims at culling all
shadow casters which do not contribute to visible shadow. We de-
scribed several methods to create suitable receiver masks, and in
particular one method which creates a practically pixel-exact mask
through reverse shadow lookups.

Our method addresses the significant open problem of efficient con-
struction of shadow maps especially in large outdoor scenes, which
tend to appear more and more often in recent entertainment applica-
tions. We demonstrate speedups of 3x-10x for large city-like scenes
and about 1.5x-2x for a scene taken from a recent game title. The
method is also easy to implement and integrates nicely with com-
mon rendering pipelines that already have a depth-prepass.

Furthermore, we proposed a method for incremental shadow map
updates in the case of statically focused shadow maps, as well as
optimizations to the CHC++ occlusion culling algorithm, which are
also applicable in other contexts.

In the future we want to focus on using the method in the context
of different shadow mapping techniques and to study the behavior
of the method in scenes with many lights.
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